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Abstract. The recognition of human activity has been extensively
investigated in the last decades. Typically, wearable sensors are used
to register body motion signals that are analyzed by following a set
of signal processing and machine learning steps to recognize the activ-
ity performed by the user. One of the most important steps refers to
the signal segmentation, which is mainly performed through window-
ing approaches. In fact, it has been proved that the choice of window
size directly conditions the performance of the recognition system. Thus,
instead of limiting to a specific window configuration, this work proposes
the use of multiple recognition systems operating on multiple window
sizes. The suggested model employs a weighted decision fusion mecha-
nism to fairly leverage the potential yielded by each recognition system
based on the target activity set. This novel technique is benchmarked on
a well-known activity recognition dataset. The obtained results show a
significant improvement in terms of performance with respect to common
systems operating on a single window size.
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1 Introduction

The identification of human behavior based on body-worn sensors, also known
as wearable activity recognition, has attracted very much attention during the
last years. Wearable activity recognition systems have been proven of particular
interest, for example, to promote healthier lifestyles [1,2,26], detect anomalous
behaviors [20,23] or track on conditions [16]. A set of steps combining signal
processing and machine learning techniques are normally used in the activity
recognition process. Concretely, one or various sensors are typically placed on
limbs and trunk to register and translate human body motion into digital signals
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representing the magnitude measured, normally acceleration. The registered sig-
nals are sometimes filtered when these are found to be disturbed by electronic
noise or other type of artifacts [17]. To capture the dynamics of the movement,
the signals are subsequently partitioned in segments or data windows [8]. Then
a feature extraction process is performed on each data window to provide a
handler representation of the signals for the pattern recognition stage. Diverse
heuristics [18], time-frequency domain [19,22] and other sophisticated mathe-
matical and statistical functions [4] are commonly used to that end. In some
cases, a feature selector is used to reduce redundancy among features as well
as to minimize dimensionality [21]. The resulting feature vector is provided as
input of a classifier, which ultimately yields the recognized activity or class to
one of the considered for the particular application. All these steps, commonly
referred as to activity recognition chain, are extensively reviewed in [10].

Although all stages of the activity recognition process are undoubtedly impor-
tant, a recent work [8] showed the particular impact of the segmentation phase
on the accuracy of the recognition models. Amongst other findings, this work
showed the existing relation among activity categories and involved body parts
with the window size utilized during the segmentation process. As a result, spe-
cific design figures are proposed, which in principle allow developers to set a
certain window size value to optimize the recognition system capabilities. Nev-
ertheless, these values are very specific to each application domain; thus, no
particular window size may exist for systems intended to recognize multiple
diverse activities. In that vein, this paper proposes the use of fusion mechanisms
to benefit from the utilization of several window sizes instead of restricting to a
single one. Fusion strategies have been already used in previous activity recogni-
tion systems for diverse purposes, such as dealing with sensor displacement [6,9],
anomalies [3] and power management [27]. This work presents an innovative mul-
tiwindow fusion technique that weights and combines the decisions provided by
multiple activity recognizers configured to operate on different windows sizes of
the same input data. The rest of the paper is organized as follows. Section 2
describes the multiwindow fusion method. Section 3 presents and discusses the
results obtained after benchmarking the proposed method on a well-known activ-
ity recognition dataset. Final conclusions are summarized in Section 4.

2 Multiwindow Fusion

As stated before, the recognition of activities of diverse characteristics potentially
require the use of various levels of segmentation. Therefore, the model proposed
here consists in the combination of multiple activity recognition chains, every
one utilizing a different window size configuration. Each of these chains builds
on the same input signals, and for the sake of simplicity, all are considered to use
similar feature extraction and classification procedures. For practical reasons, the
selected window sizes should be divisors of the largest one among considered,
which is defined according to the particular needs posed by the target activity
set and system recognition period. The key challenge of this approach consists in
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the intelligent aggregation of the decisions, i.e., recognized activities, delivered
by each chain. To that end, a two-step fusion process is here suggested. First, the
decisions provided by each individual activity recognizer are locally weighted and
aggregated to yield a sole recognized activity per chain. The activities identified
for each chain are then combined in a second stage to eventually deliver a unique
recognized activity. The complete structure of the proposed model is depicted
in Figure 1, while its mathematical foundation is described in the following.

Let us consider a problem with N classes or activities, n = 1, ..., N . Given
a set of raw, u, or preprocessed, p, sensor data, these are segmented by using
Q different window sizes, {W1, ...,WQ−1,WQ}, with WQ|WQ−1|...|W1 divisors of
WQ, and WQ formally representing the system recognition period. This leads
to the creation of Q independent recognition chains, in which every data win-
dow of size WQ, i.e., sWQ , is split into WQ/Wk segments of size Wk, i.e.,
{sWk

1 , ..., sWk
i , ..., sWk

WQ/Wk
}, for all k = 1, ..., Q and i = 1, ...,WQ/Wk. Each seg-

ment sWk
i is transformed into features, f(sWk

i ), which are input to each respective
classifier, yielding a recognized activity or class, cWk

i .
At this point the multiwindow fusion technique is employed. First, the deci-

sions of each individual classifier are weighted and averaged across all segments
and for all classes:

WDWk
n =

WQ/Wk∑

i=1

λWk
n ∀ cWk

i = n (1)

where the weight factor λWk
n represents the capabilities of the classifier k, that

operates on data windows of size Wk, for the recognition of the activity or class
n. This factor is different for each class and window size, and can be calculated
from a prior evaluation of the performance of each respective activity recognition
chain, similarly as it is proposed in [5]. Now, the class cWk predicted for each
classifier after fusion is the class n for which WDWk

n is maximized:

cWk = argmax
n

(
WDWk

n

)
(2)

This process is repeated in a second level by weighting and averaging the
decisions obtained in the previous fusion step for each respective window size:

WDn =
Q∑

k=1

λWk
n ∀ cWk = n (3)

The eventual recognized class is defined as the one obtaining the highest
weighted sum:

c = argmax
n

(WDn) (4)
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Fig. 1. Multiwindow fusion schema (example for Q=5 different window sizes). The raw
sensor data, u, is preprocessed, p, and segmented into data windows, sWk

i , of size Wk,
thus defining Q independent recognition chains. For each chain k and window i, a set of
features are extracted, f(s

Wk
i ), which are input to each respective classifier, yielding a

recognized activity or class, c
Wk
i . The recognized classes are weighted and fused in a first

stage to predict the most likely activity for each chain, cWk
i . The classes predicted after

fusion for each chain are again weighted and fused to deliver the eventual recognized
activity.

3 Results and Discussion

3.1 Experimental Setup

One of the most complete available activity recognition datasets [7] is used for
evaluation. This dataset comprises motion data, namely, acceleration, rate of
turn and magnetic field orientation, recorded for 17 volunteers while performing
33 fitness activities. A set of nine inertial sensors attached to different parts of
their bodies was used for the motion recording. From all measured magnitudes
only the acceleration data is here considered since this demonstrates as the most
prevalent sensor modality in previous activity recognition contributions. The
potential of this dataset stems from the number of considered activities, diversity
of body parts involved, as well as the variety in intensity and dynamicity of the
actions. Moreover, all the recordings were collected in an out-of-lab environment
with no constraints on the way the activities must be executed.

The activity recognition models devised for evaluation are described next.
No preprocessing of the data is applied to avoid the removal of relevant infor-
mation. This is normal practice when the activities are of a diverse nature.
Five window sizes used in previous works are considered for study, respectively,
W1 = 0.25, W2 = 0.75, W3 = 1.5, W4 = 3 and W5 = 6, all in seconds. Mean
and standard deviation are used for the feature extraction, given their discrim-
ination potential and ease of interpretation in the acceleration domain [13,14].
Four well-known machine learning techniques widely utilized in previous activity
recognition problems are considered for classification, namely, C4.5 decision trees
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(DT, [12]), k-nearest neighbors (KNN, [11]), naive Bayes (NB, [25]) and nearest
centroid classifier (NCC, [15]). The k-value for the KNN model is particularly
set to three as it has been shown to provide good results in related works. The
λWk
n weights used in the fusion process correspond to the F -score [24] values

obtained in [8] from the analysis of similar recognition systems operating on the
window sizes and activities considered in this experiment. The evaluation of the
multiwindow fusion models is performed through a ten-fold random-partitioning
cross validation process applied across all subjects and activities. The process is
repeated 100 times for each method to ensure statistical robustness.

3.2 Multiwindow Fusion Evaluation

The results obtained for the multiwindow fusion process after assessment of all
possible combinations of the selected window sizes are presented in Table 1. No
fusion is explicitly performed for the single-window-based recognition models;
thus, the results presented for this case refer to the performance obtained at the
classification level, i.e., before fusion.

In broad strokes, the use of multiple window sizes certainly improves the
recognition capabilities of the considered systems. This result is observed for
all classification paradigms. For example, an enhancement of more than 7% is
attained when using the combination W1W2W4 and DT with respect to the
best results obtained by using a single window size, here for W3. More mod-
est improvements, around 2%, are achieved for NB, NCC, and KNN in similar
conditions. The differences are more striking when compared with the worst
performing single-window-based recognition models, with improvements of up
to 30%.

Another fact to be noted corresponds to the number of windows required for
improving the performance of the recognition system. Best results are not neces-
sarily obtained for the combination that involves the highest number of windows.
Conversely, in some cases such as for NCC and KNN, the combination of simply
two windows turns to be enough to neatly improve the recognition capabilities
of the system. This demonstrates the potential of the fusion mechanism even for
small sets of decision makers.

As it may be apparent, the use of multiple windows translates into a higher
computation complexity, therefore might not be justified under some circum-
stances or not be recommended when the improvement is negligible. However, in
some cases it is observed that the use of multiple windows can actually reduce the
recognition time, a key characteristic in applications that require a fast response
(e.g., fall detector). This is the case, for example, of the combination W1W4 in
NB, which enhances the accuracy with respect to the best single-window-based
recognition system, W5, thus permitting to reduce the recognition period from
6s to 3s. The importance of this effect is also observed for the case of W1W2

in KNN, which improves the performance of W4 while reducing the recognition
time from 3s to 0.75s.

Finally, it is worth noting that the combination of two or more window sizes
generally translates into a recognition performance greater or equal to the one
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Table 1. Multiwindow fusion performance (F − score) for all possible combinations of
considered window sizes (W1 = 0.25s, W2 = 0.75s, W3 = 1.5s, W4 = 3s and W5 = 6s)
and diverse classification paradigms (DT, NB, NCC, KNN)

Combined window sizes DT NB NCC KNN

W1 0.835 0.702 0.596 0.976

W2 0.879 0.868 0.807 0.979

W3 0.895 0.900 0.864 0.981

W4 0.886 0.908 0.873 0.984

W5 0.869 0.910 0.870 0.942

W1W2 0.878 0.855 0.760 0.991

W1W3 0.915 0.905 0.856 0.996

W1W4 0.920 0.922 0.870 0.976

W1W5 0.915 0.917 0.867 0.967

W2W3 0.877 0.905 0.858 0.991

W2W4 0.910 0.925 0.878 0.981

W2W5 0.917 0.918 0.866 0.958

W3W4 0.876 0.925 0.881 0.976

W3W5 0.893 0.922 0.876 0.954

W4W5 0.861 0.923 0.878 0.952

W1W2W3 0.954 0.893 0.832 0.995

W1W2W4 0.968 0.916 0.855 0.990

W1W2W5 0.960 0.911 0.855 0.968

W1W3W4 0.956 0.927 0.880 0.989

W1W3W5 0.956 0.922 0.876 0.967

W1W4W5 0.936 0.926 0.878 0.966

W2W3W4 0.945 0.928 0.880 0.989

W2W3W5 0.944 0.923 0.876 0.966

W2W4W5 0.928 0.924 0.873 0.966

W3W4W5 0.925 0.926 0.878 0.959

W1W2W3W4 0.967 0.926 0.879 0.989

W1W2W3W5 0.961 0.923 0.873 0.967

W1W2W4W5 0.955 0.926 0.874 0.967

W1W3W4W5 0.953 0.927 0.878 0.964

W2W3W4W5 0.945 0.924 0.878 0.962

W1W2W3W4W5 0.960 0.924 0.878 0.968

of best characteristics among considered. This fact is of special importance since
it proves the stability and consistency of the proposed fusion mechanism.

4 Conclusions

The choice of window size used in typical activity recognition applications is
highly coupled to the particular characteristics of the activities to be recog-
nized. Previous works proved that a single window size value can be considered
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in recognition systems devised for a very specific domain including a few similar
activities. However, no clear value can be determined for problems involving sev-
eral activities of a more diverse nature. To overcome this limitation, the simul-
taneous use of multiple window sizes is here suggested. Concretely, this work
proposes a novel multiwindow fusion technique that weights and combines the
decisions provided by multiple activity recognizers configured to operate on dif-
ferent windows sizes of the same input data. The proposed approach is shown to
significantly outperform classical single-window-based recognition models. More-
over, the performed evaluation also shows that using several windows sizes not
necessarily translates into best results, but that considering a few ones might be
enough for obtaining a highly accurate recognition system.
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