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Abstract. So far little attention has been paid to activity recognition
systems limitations during out-of-lab daily usage. Sensor displacement
is one of these major issues, particularly deleterious for inertial on-body
sensing. The effect of the displacement normally translates into a drift
on the signal space that further propagates to the feature level, thus
modifying the expected behavior of the predefined recognition systems.
On the use of several sensors and diverse motion-sensing modalities, in
this paper we compare two fusion methods to evaluate the importance
of decoupling the combination process at feature and classification lev-
els under realistic sensor configurations. In particular a ’feature fusion’
and a ’multi-sensor hierarchical-classifier’ are considered. The results re-
veal that the aggregation of sensor-based decisions may overcome the
difficulties introduced by the displacement and confirm the gyroscope as
possibly the most displacement-robust sensor modality.

Keywords: Sensor displacement, Sensor network, Sensor fusion, Activ-
ity recognition, Human Behavior, Motion sensors.

1 Introduction

The development of systems and mechanisms capable of analyzing the human
behavior has attracted tremendous attention during the last few years. The
potential of activity recognition (AR) applications supports such interest and
evidences their wide possibilities. Monitoring and identifying people routines or
actions may be used in domestic contexts to avoid or alert from risk situations
such as falls or faintings or promote healthier lifestyles through personalized
guidelines and recommendations [1]. Workplace environments may also leverage
the use of AR systems to increase for example the productivity in industrial
maintenance or reinforce safety procedures [14]. Field-specific systems may also
help high-level athletes to improve their performance or scores as well as am-
ateurs to get insights about how to make faster progresses within a particular
sport discipline [11].
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Although there are hundreds of contributions that tackle the activity recog-
nition problem, the maturity of this field is still reduced due to numerous unre-
solved issues related to systems reliability, robustness, pervasiveness and seam-
less of usage. One of these unresolved matters is sensor displacement, which
is particularly critical in on-body inertial-sensing. Body sensors are usually lo-
cated in specific places recommended by the manufacturer, however their use
under daily living circumstances demonstrate that wrong attachments, loss of
fitting or abrupt movements frequently drive to sensors de-positioning. Only a
few contributions have analyzed issues in this regard. Kunze et al. described a
first attempt to self-characterize sensors’ on-body placement [9] and orientation
[10] from the acceleration analysis during walking. They also demonstrated the
effect of rotations and displacement in accelerometers, and proposed a way to
partially deal with them through the use of additional sensor modalities [8].
These heuristic methods are coupled to the assumption that the user performs
the specific activities required at some point, which nevertheless might not al-
ways be guaranteed. Foerster et al. [7] studied the possibility of systems self-
calibration through the adjustment of the classifier decision boundaries. This
supports tracking the changes experimented in the feature space due to the sen-
sor displacement. Similarly in [5] the authors proposed a method to compensate
the data distribution shift caused by sensor displacements through the use of an
expectation-maximization algorithm and covariance shift analysis.

As an alternative, sensor fusion may be encountered to cope with displacement
effects. A key advantage is that identifying the failure sources is not necessarily
required to compensate the associated errors in the activity recognition process.
Just a few previous works addressed this problem in this regard. Zappi et al.
[15] showed a significant tolerance increase by using a large set of sensors in
combination with majority voting or naive Bayes decision fusion models. A more
sophisticated scheme is presented in [13] which attempts to detect anomalies
and potential affected sensors in order to remove them from the sensor ecology.
Similarly, in [3] the authors applied sensor fusion for dealing with synthetically
induced sensor anomalies.

In this work we apply two fusion models that are ultimately compared in
terms of accuracy and robustness. The models are tested on a realistic dataset
especially intended to benchmark techniques that deal with the effects of sensor
displacement and de-positioning in activity recognition. The rest of the paper
is organized as follows. In Section 2 the effects of displacement on inertial mon-
itoring are described. Section 3 briefly introduces the AR methodology while
Section 4 presents the experimental setup. Results and discussion are provided
in Section 5. Finally, Section 6 summarizes main conclusions.

2 Sensor Displacement Effects

The concept of sensor displacement (in application to inertial on-body sensing)
may be understood as the combination of two transformations: rotations and
translations. According to the physics of the rigid body, rotations refer to the
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circular movements that the sensor experiences around its rotation axes or upon
itself. Translations correspond to the movements of the sensor from a given
position to another distant position through a specific direction.

Sensor displacement applies to each inertial sensing modality (acceleration,
rate of turn, magnetic field) to a different extent. Thus for example, acceleration
is especially sensitive to rotations. Rotations determine a change in the sensor
local frame of reference with respect to its original spatial distribution. This
causes a shift in the direction of the gravitational component with respect to the
sensor reference frame. The effect of translations is normally more dependent on
the initial and end position as well as the magnitude of the acceleration expe-
rienced by the sensor. More robust to displacement anomalies are gyroscopes,
which are minimally affected by rotations along their rotation axis and transla-
tions along the same body limb. Magnetic field measurements are also affected
by rotations and to a lower extent by translations when assuming no gimbal lock
degeneration.

Sensor displacement normally leads to a new signal space. In this new space
the sensor readings likely differ with respect to those expected from a default
or predefined sensor placement. These changes propagate through the different
stages of the activity recognition chain (Section 3), thus affecting the inference
process. An example of such effects is depicted in Figure 1. Here, a sensor dis-
placement unintentionally introduced by the user when self-attaching the devices
(Figure 1(a)) translates into a significant drift at the feature level (Figure 1(b)).
Consequently, a model trained under the assumption of an ideal placement of
the sensors (and accordingly a bounded feature space) may not normally cope
with the variations introduced by the new feature space.

Other factors that also influence the magnitude of the displacement effects
are the sensor on-body location (initial and final) and the magnitude of the
motion experienced by the affected sensors. Thus for example, the drift may
be pronounced when the sensor is displaced from the extreme of a limb (highly
motional) to a position closer to the trunk (more limited mobility) when energetic
activities are performed. On the contrary, during inactivity or while resting this
change may not have appreciable consequences. Therefore, the effects are quite
dependent on the particular activities, gestures or movements the user performs.

3 Activity Recognition Methods

Activity recognition approaches normally consist of a set of steps also known
as activity recognition chain (an insightful review may be seen in [12]). Given a
set of sensors positioned in different parts of the subject’s body, these nodes are
used to measure the motion experienced by each part. These records are trans-
lated into raw unprocessed signals that numerically represent the magnitude
measured. Sometimes the signals are filtered out to remove possible anomalies
such as electronic noise, however the information loss may be inappropriate in
other cases. To capture the dynamics of the movements the signals are fur-
ther segmented in partitions of a given size, normally through windowing or



Handling Sensor Displacement in AR 83

RCIDEAL LCIDEAL= LCSELF RCSELF 

(a) Sensor displacement originated during sensor self-
placement (LCIDEAL = LCSELF , RCIDEAL �= RCSELF )
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Fig. 1. Example of sensor displacement introduced during the user self-placement (a)
and its effect at the feature level (b). In this particular example the displacement from
the default to the self-placement case applies to the right calf (RC) while the position
remains roughly similar for the sensor attached to the left calf (LC). In (b) each mark
represents an instance of the ’jump up’ activity.

event/activity based techniques. Then a specific set of features are extracted
from the data to provide a handler representation of the signals for the pat-
tern recognition stage. A wide range of heuristics, time/frequency domain and
other sophisticated mathematical and statistic functions are commonly used.
The feature vector is provided as input to the classifier, ultimately yielding the
recognized activity.

At this point, two approaches are proposed. The first one, here defined as
’feature fusion’ corresponds to the case where all features coming from each
individual sensor are combined on a single feature vector. This feature vector
inputs a generic reasoning model. The second more sophisticated model [2] uses
the individual feature streams extracted from each corresponding sensor and
fuses the decisions obtained from the classifiers associated to every sensor. The
so-called ’multi-sensor hierarchical classifier’ is a technique that takes in the main
advantages of hierarchical decision and majority voting models. Considering so,
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the idea is to give all the decision entities the opportunity to collaborate on the
decision making, but ranking the relative importance of each decision through
the use of weights based on the classification entities individual performance.

4 Experimental Setup

For the evaluation of the proposed model an activity recognition bench-
mark dataset is used [4]. This dataset is particularly appropriate for sensor
de-positioning analysis because of its diverse displacement modes, amount of
subjects and variety of activities. Namely, the dataset comprises motion data
(tridimensional acceleration - ACC -, rate of turn - GYR - and magnetic field -
MAG -) recorded for 17 volunteers while doing 33 ’easy-to-perform’ fitness ex-
ercises. The activity set defines from cardio-exercises such as running or cycling
to general body movements like waist rotations (”hula hoop”) or body-specific
such as arms or knees bending. These exercises are performed while wearing a
set of nine inertial sensors attached to different body parts.

Three scenarios in relation to the sensor displacement concept are con-
sidered: ”ideal-placement”, ”self-placement” and ”induced-displacement”. The
ideal-placement corresponds to the default or baseline scenario where the sen-
sors are positioned by the instructor to specific well-identified locations (here on
the middle of each limb and the back). A subset of the sensors is asked to be
placed by the users themselves for the self-placement scenario, thus introducing
a more realistic concept of daily sensor usage. Finally, the induced-displacement
(also identified as ’mutual’) constitutes the most troublesome scenario since in-
tentional de-positioning of sensors is introduced by the instructor. This is of
special interest to bench activity recognition solutions in conditions far from
the default setup. These two last scenarios will normally lead to on-body sensor
setups that differ with respect to the ideal-placement.

A subset of the original datasets is here considered. Ten of the most repre-
sentative activities define the evaluation bench ({1, 4, 8, 10, 12, 18, 22, 25, 28, 33},
see [4] for equivalence). These activities apply to the all three datasets (’ideal’,
’self’ and ’induced’). Moreover, the experimental set includes the evaluation of
each separated sensor modality (i.e., ACC, GYR and MAG) and their combi-
nations. A segmentation process consisting of a non-overlapping sliding window
(6 seconds size) is applied to each data stream. Mean, standard deviation, max-
imum, minimum and mean crossing rate are subsequently calculated for each
window during the feature extraction process. C4.5 decision trees [6], which
have been extensively and successfully applied in previous activity recognition
problems, are used both for the multi-class classifiers and the binary or base
classifiers components of the hierarchical approach. For the ideal scenario a ten-
fold random-partitioning cross validation process is applied across all subjects
and activities. This process is repeated 100 times for each method to ensure
statistical robustness. For both ’self’ and ’induced’ cases the procedure consists
of testing a system trained in all ’ideal’ data on the formers.
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5 Results and Discussion

Figure 2 depicts the accuracy results for both feature fusion and multi-sensor
hierarchical classifier. The evaluation of the models on the different sensor-
placement scenarios (legend) is shown for each sensor modality or combination
(X axis). The accuracy results demonstrate that the proposed methods are ad-
equate solutions under the assumption of a fixed sensor setup. Nevertheless, it
should be noted that both self-positioning and induced-displacement scenarios
introduce a significant drop on the recognition systems performance with respect
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Fig. 2. Accuracy (mean and standard deviation) results from the evaluation of the
a) feature fusion and b) multi-sensor hierarchical classifier when tested on the fitness
dataset (the top legend identifies the type of sensor placement, see Section 4). Hori-
zontal axis labels correspond to the sensor modalities used during the evaluation.
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to the ideal or default scenario, which confirms the effects described in section 2.
Clearly, the more profound the displacement applied (’induced’ case) the higher
the performance drop.

There are significant differences depending on whether the feature fusion or
the multi-sensor hierarchical classifier are approached. When using the feature
fusion (Figure 2(a)) it can be found differences with respect to the ’ideal’ perfor-
mance and the ’self’ scenario that range from approximately 20% in the best case
(GYR) to more than 40% at worst (ACC). This is more pronounced for the ’in-
duced’ case, where the variations go from 25% for the GYR to 65% again for the
ACC based system. Thereby, it can be concluded that the acceleration modality
is the most sensitive of the considered ones, followed by the magnetic field and
rate of turn, with the latter the most robust magnitude. Now, the results for
the hierarchical model (Figure 2(b)) are quite more promising. The comparison
of ’ideal’ and ’self’ scenarios shows a performance drop of less than 5% for the
GYR that increases up to 15% for ACC and MAG and at worst reaches 20%
when both are combined (ACCMAG). The differences with respect to the ’in-
duced’ case spans from a bit more than 10% for the GYR to almost 50% when
MAG modality is used. These better results for the multi-sensor hierarchical
classifier may be explained since individual variations within a particular sensor
with respect to its default behavior have less impact in the classification process.
This is possible since each sensor contributes in an independent manner to the
final delivered decision, so a majority of sensors (normally unaffected) overcomes
the decisions provided by entities of affected sensors. Conversely, feature fusion
models aggregate all features in a single data vector, thus leading to a potential
feature drift that cannot be handled by the reasoning model. It can be concluded
then that the hierarchical model prevails over the feature fusion approach.

6 Conclusions

In this paper we have compared two fusion mechanisms when dealing with sensor
displacement effects. One of these approaches consists of a feature fusion that
combines all features extracted from each sensor or node in a single feature
vector that inputs to a simple decision tree classifier. This model demonstrates
to not handle the data drift resulting from the sensors displacement. On the other
hand, the second model constituted by a multi-sensor hierarchical classifier uses
each sensor as individual inputs to independent decision entities that eventually
concur on a recognized activity. This method turns to be more robust since
displaced sensors have a lesser influence on the final decision when considered
a minority. Future work aims to analyze the proportion of sensors to which the
influence is satisfactorily overcome. Moreover some sensor modalities have been
demonstrated more robust to displacements than others. Acceleration is the
more sensitive whereas magnetic field and gyroscope are normally more robust,
especially the latter. Combinations of inertial modalities do not necessarily lead
to further improvement but to increase the complexity of the recognition system.
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