Prospective students and research associates

Bachelor and Master projects under my supervision are both research and application-oriented, yet primarily related to the topics we are currently investigating in our group. You can get a sense by having a look at some of the completed projects (see below). Do not hesitate to contact me if you are interested in a project or in being involved in the activities of our group. Research internships are also a possibility, for example through the Erasmus+ program, so please send me an email if you are interested.

I am also looking for passionate students interested in pursuing a PhD in Data Science, Ubiquitous Computing, and Digital Health in our group. If you are interested please contact me by email or drop by my office in order to discuss the possibilities for funding your studies.

I am happy to discuss postdoc opportunities in our group, also potentially through fellowships such as those offered through the EU Marie Skłodowska-Curie Actions or the ERCIM Program.

Supervised PhD Theses

Ontology Engineering and Reasoning to Support Real World Human Behavior Recognition [Dissertation]

By Claudia Villalonga, University of Granada, Spain (December 2016)

* Thesis awarded with Cum Laude honors.

Despite the popularity of human behavior recognition systems, most available solutions are developed to operate on predefined settings and fixed sensor setups. Real-world behavior recognition applications and users demand more flexible sensor configurations, which may deal with potential adverse situations such as defective or missing sensors. This thesis aims at exploring new ways for supporting seamless and reliable behavior recognition. This work revolves around the hypothesis that ontologies are the perfect means to comprehensively describe the available resources that could be utilized for human behavior recognition in the wild. Not only do ontologies provide interoperability, but this semantic representation of knowledge also enables, through ontological reasoning, the smart selection of the best resources that could provide behavior recognition capabilities in real world scenarios.

Supervised Master Theses

Mobile health system for evaluation of breast cancer patients during treatment and recovery phases [Dissertation]

By Joaquin Ollero, University of Granada, Spain (July 2016)

Breast cancer is the most common tumor in western women and statistically 1 out of 8 women will develop breast cancer over their lifetime. The rehabilitation the patient should follow after surgery is critical to recover from the suffered illness. In this work, a system composed of 3 applications, one for smartwatches, one for smartphones and a web application, is presented. Applications for handheld devices are directed to the patient who is undergoing rehabilitation and allow to monitor parameters of interest that will indicate whether the rehabilitation process being followed is improving the health of the patient. The web application is directed to a medical expert with the objective of tracking rehabilitation conducted by the patients.

Development of an intelligent mHealth system to predict trunk endurance and muscle fatigue [Dissertation]

By Ignacio Reyes, University of Granada, Spain (July 2016)

* Project awarded with the Talentum Startup Grant (Telefonica, Spain) and the second prize in the VI UGR Entrepreneurial Contest (University of Granada, Spain).

This work extends a prior system for the automatic estimation of the trunk endurance using mobile and wearable sensors. Particularly, a new cloud-based storage and processing is proposed for the persistence and analysis of the data registered during the test sessions. Moreover, data mining techniques are implemented to identify correlations between the user activity, self-assessment and the endurance results. In addition, to verify the usefulness of the system, the endurance tests have been tested by the new developed system for a professional football team. This study especially aims to be the start point for the development of a new classification system of muscle activity for the lower back, based on the use of clustering and data mining in the new data generated by the application.

Development of a platform for the exchange of datasets with integrated opportunities for artificial intelligence using MatLab [Dissertation]

By Christian Wansing, University of Applied Sciences Muenster, Germany (July 2015)

Tons of datasets are increasingly available in many repositories, e.g., DATA.GOV, UCI or AWS. However, there is a clear lack of webtools that help automate the process of analyzing those datasets. This thesis contributes with a new user-friendly webtool especially oriented to support researchers in the analysis of existing and newly collected datasets. The website allows users to upload their datasets and share them with the community. The uploaded data can be analyzed through various methods and functions. Both raw and processed data can be represented through advanced visualization techniques. The tool implements several algorithms to create machine learning models with the uploaded data. Based on these generated models new data can be classified or predicted.

An innovative clinical support system for trunk endurance assessment [Dissertation]

By Ignacio Reyes, University of Granada, Spain (June 2015)

* Project awarded with honors and with the ETSIIT second prize to the best project in Telecommunications Engineering (University of Granada, Spain).

Low back pain is a primary cause of disability worldwide. Trunk endurance tests are normally considered to assess the muscle status; however, traditional procedures suffer from practical limitations leading to inaccurateness. This work developed mDurance, an innovative mHealth system to support specialists in the trunk endurance assessment. A wearable MIMU sensor is used to dynamically track the patient trunk posture to estimate the test duration, while portable EMG sensors are employed to seamlessly measure the muscle stress. The information is managed by an app facilitating the expert routine and minimizing human errors. The mDurance potential is shown through a case study. In order to show the potential of the mDurance system, a case study has been conducted. The results of this study prove the reliability of mDurance and further demonstrate that practitioners are certainly interested in the regular use of a system of this nature.

Automatic detection of on-body sensors location for opportunistic and robust inference of behavior [Dissertation]

By Marta Calles, University of Granada, Spain (February 2014)

Activity recognition models are normally based on predefined on-body sensor positioning. However, the sensor deployment may vary due to several conditions. User self-attachment, firmness of the attachment (loose of fitting) or displacements due to the use of the sensors may introduce variations with respect to the original setup. Furthermore, the accuracy of the recognition system may strongly depend on the particular body position considered for the mounting of the sensor. This project explores the effects that different sensor configurations/positions may have on the system recognition capabilities. Furthermore, this thesis presents new techniques that attempt to autonomously identify where a sensor is on-body located. This information is particularly interesting to adapt the recognition methods to the best sensor configuration at each time.

mHealthDroid: a toolkit for rapid development of mHealth applications [Dissertation]

By Alejandro Saez, University of Granada, Spain (December 2013)

* Project awarded with the Emilio Herrera Linares award to the best Spanish graduate research project (University of Granada, Spain).

Mobile health is an emerging field which is attracting much attention. Nevertheless, tools for the development of mobile health applications are lacking. This work presents mHealthDroid, an open source Android implementation of a mHealth Framework designed to facilitate the rapid and easy development of biomedical apps. The framework is devised to leverage the potential of mobile devices like smartphones or tablets, wearable sensors and portable biomedical devices. The framework provides functionalities for resource and communication abstraction, biomedical data acquisition, health knowledge extraction, persistent data storage, adaptive visualization, system management and value-added services such as intelligent alerts, recommendations and guidelines.

Design, implementation and validation of a framework for agile development of mHealth applications [Dissertation]

By Rafael Garcia, University of Granada, Spain (December 2013)

* Project awarded with the Emilio Herrera Linares award to the best Spanish graduate research project (University of Granada, Spain).

The delivery of healthcare services has experienced tremendous changes during the last years. Mobile health or mHealth is a key engine of advance in the forefront of this revolution. Although there exists a growing development of mobile health applications, there is a lack of tools specifically devised for their implementation. This work presents mHealthDroid, an open source Android implementation of a mHealth Framework designed to facilitate the rapid and easy development of mHealth and biomedical apps. The framework is particularly planned to leverage the potential of mobile devices such as smartphones or tablets, wearable sensors and portable biomedical systems. These devices are increasingly used for the monitoring and delivery of personal health care and wellbeing. An exemplary application is also presented along this work to demonstrate the potential of mHealthDroid. This app is used to investigate on the analysis of human behavior, which is considered to be one of the most prominent areas in mHealth. An accurate activity recognition model is developed and successfully validated in both offline and online conditions.

Window size effect in activity recognition. Improving systems reliability through multi-segmented fusion [Dissertation]

By Juan Manuel Galvez, University of Granada, Spain (September 2013)

Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but there exists no clear consensus on which window size should be preferably employed. This work investigates the effects of the windowing procedure on the activity recognition process. To that end, diverse recognition systems are tested for several window sizes also including the values used in previous works. The study proves that reduced window sizes lead to a better recognition of the activities, which goes against the generalized idea of using long data windows. Moreover, this work explores the combination of multiple recognizers operating on different window sizes to optimize the recognition performance.

Android APP for biomedical monitoring [Dissertation]

By Hendrik Mende, University of Applied Sciences Muenster, Germany (October 2012)

The ever progressing technological advances on the development of mobile phones, medical sensors and wireless communication systems are supporting a new generation of unobtrusive, portable and ubiquitous health monitoring systems for a continuous patient assessment and a more personalized health care. In this paper we present PhysioDroid, an Android based application operated together with a wearable monitor capable of measuring vital information such as electrocardiogram (ECG), heart rate (HR), respiration rate (BR), skin temperature and motion directly from the human body. The application provides gathering, storage and processing features for the body sensor data. Likewise, the system works as a gateway enabling data transfer to a remote server which may be used for further processing and analysis. PhysioDroid also implements visualization of physiological information mainly intended to trigger alerts and emergency calls when abnormalities or risk situations are detected.

Development of an Android application for the monitoring, storage and upload of biomedical data [Dissertation]

By Andreas Hermes, University of Applied Sciences Muenster, Germany (October 2012)

There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. This work contributes to the development of a new medical application that provides a personalized means to remotely monitor and evaluate users’ conditions. The system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. Based on the analysis of the user's vital sign and behavioral information the application can trigger personal alerts when abnormal situations are detected.

Signal preprocessing effects on daily living activity recognition systems [Dissertation]

By Juan Manuel Galvez, University of Granada, Spain (September 2012)

Although much effort has been put in the development of valid activity recognition models, most related works do not regularly consider the preprocessing of the motion data. This work evaluates the effect of processing human inertial-sensing signals for diverse daily living activities. The findings of this study demonstrate that depending on the target activity set different preprocessing techniques should be considered.

Sensmotion: an APP for daily living activities monitoring [Dissertation]

By Raul Nadal, University of Granada, Spain (September 2012)

The use of smartphones for the recognition of human activities has attracted much interest during the recent years. Smartphones are at the reach of most consumers, and as such, these devices are the perfect means for the development of realistic activity recognition applications. This work explores the use of the inertial sensors provided by standard smartphone devices to identify some of the most commonplace user activities.

Human activity recognition based on an application for the Android operating system [Dissertation]

By Jens Ostrowski, University of Applied Sciences Muenster, Germany (September 2011)

Physical activity recognition is an area of growing interest given its multiple application domains. Although there exist several studies analyzing the potential capabilities of diverse recognition systems, there are few contributions exploring the use of smartphones for determining the user activity. A new application is developed to help recognizing the daily living physical activity of the user by using the available sensors in the smartphone. The application can collect lots of data from users all over the world. These data can be uploaded to a server to be analyzed in the future. With the help of this monitoring system we can find out more about the physical activity of the users and increase the accuracy of the application.

Supervised Bachelor Theses

Traceability of medical equipment through hospitals and retirement homes [Dissertation]

By Dennis Rieffe, University of Twente, Netherlands (February 2017)

Staff working in healthcare and retirement homes frequently face high workloads and accordingly high stress levels are reported by healthcare personal. In hospitals and nursing homes valuable time is lost while searching for medical devices and supporting aids like lifts or beds. Another disadvantage of lost equipment is that the required maintenance is not conducted at the time of need. A system that easily tracks and finds such devices would save valuable time and accordingly would reduce the work stress of healthcare staff and improve the quality of work. This thesis describes the feasibility study of a simple and low cost tracking system for medical devices based on existing IT infrastructure available in every hospital and retirement homes nowadays: A Wi-Fi network. An indoor Wi-Fi fingerprint system was developed, tested and evaluated. This study has shown that a tracking system based on Wi-Fi position is feasible.

Automatic estimation of knee alignment based on depth video [Dissertation]

By Carlos Bailon, University of Granada, Spain (July 2016)

* Project awarded with honors (University of Granada, Spain).

Knee alignment measurements are one of the most extended indicators of knee-complex injuries such as anterior cruciate ligament injury and patellofemoral pain syndrome. The Frontal Plane Projection Angle (FPPA) is widely used as a 2-D estimation of knee alignment. However, traditional procedures to measure this angle suffer from practical limitations, which lead to huge time investments when evaluating multiple subjects. This thesis presents a novel video analysis system aimed at supporting experts in the dynamic measurement of the FPPA in an cost-effective and easy way. The system employs the Kinect V2 depth sensor to track reflective markers attached to the patient leg joints to provide an automatic estimation of the angle formed by the hip, knee and ankle joints. Information registered by the sensor is processed and managed by a computer application that simplifies the expert’s work and expedites the analysis of the test results.

Incorporating a crutch into gait rehabilitation floor data [Dissertation]

By Ruben van den Berg, University of Twente, Netherlands (July 2016)

The goal of this project was to enable a larger patient group to exploit the gait rehabilitation pressure sensitive LED floor “Black Spinel”. This project involves the integration of a crutch into the Black Spinel. A prototype including a force sensitive resistor and Bluetooth module has been developed. The prototype was tested on the Black Spinel. A clear distinction was seen when steps were made on the floor as well as on the crutch. Future research might further explore the addition of a second crutch, improve calibration and filter out phantom measurements.

Automatic performance status evaluation and physical activity recognition in cancer patients for medical diagnosis assistance [Dissertation]

By Salvador Moreno, University of Granada, Spain (July 2016)

* Project awarded with a Graduate Research Assistantship (University of Granada, Spain).

The evaluation of cancer patients’ recovery is still subject to great subjectivity from a clinical perspective. Many different systems have been successfully implemented for physical activity evaluation, nonetheless there is still a big leap into performance status evaluation with ECOG and Karnofsky’s, which are possibly the most widely-used performance status scores. This thesis presents a novel system for automatically recording the patient's activity and derive these scores by using a smartphone and smartwatch. A gamification approach has also been designed for increasing patients’ motivation in their recovery. Furthermore, unprecedented algorithms for performance status and physical activity assessment have been developed to help oncologists in their diagnoses.